A Short Introduction to Climate Basics

NorMER Climate Change Workshop 28. September 2014

Overview

- Climate as the interaction of simple rules
 vs. Climate as the averaged weather
- Global energy budget → our first climate model
- Greenhouse effect
- Important feedback loops
- Global circulation in atmosphere and ocean
- Modes of variability
- Global warming
- Literature list

Temperature change, Time-scales

Climate and the Oceans, G. Vallis

Global energy budget

Climate and the Oceans, G. Vallis

A simple energy balance model

A simple energy balance model

Atmosphere:
$$S_0(1-\alpha) = \sigma T_a^4$$

Surface:
$$S_0(1-\alpha) + \sigma T_a^4 = \sigma T_s^4 \longrightarrow 2S_0(1-\alpha) = \sigma T_s^4$$

Atmosphere:
$$T_a^4 = \frac{S_0(1-\alpha)}{\sigma} \longrightarrow T_a = \sqrt[4]{\frac{S_0(1-\alpha)}{\sigma}}$$

Surface:
$$T_s^4 = \frac{2S_0(1-\alpha)}{\sigma}$$
 $\rightarrow T_s = \sqrt[4]{\frac{2S_0(1-\alpha)}{\sigma}}$

Atmosphere:
$$T_a = \sqrt[4]{\frac{342 \cdot 0.7}{5.67 \cdot 10^{-8}} \frac{W/m^2}{W/(m^2 K^4)}} \longrightarrow T_a = 255 K = -18^{\circ} C$$

Surface:
$$T_s = \sqrt[4]{\frac{2 \cdot 342 \cdot 0.7}{5.67 \cdot 10^{-8}} \frac{W/m^2}{W/(m^2 K^4)}} \longrightarrow T_s = 303K = +30^{\circ}C$$

emissivity: $\epsilon = 1$ for a black body

albedo: $\alpha = 0.3$ averaged over the earth

proportionality: $\sigma = 5.67 \cdot 10^{-8}$ $W/(m^2K^4)$ Stefan-Boltzmann constant

A simple energy balance model

Atmosphere:
$$S_0(1-\alpha) = \epsilon \sigma T_a^4 + (1-\epsilon)\sigma T_s^4$$

Surface: $S_0(1-\alpha) + \epsilon \sigma T_a^4 = \sigma T_s^4$ $\rightarrow 2S_0(1-\alpha) = (2-\epsilon)\sigma T_s^4$
Surface: $T_s^4 = \frac{2S_0(1-\alpha)}{(2-\epsilon)\sigma}$ $\rightarrow T_s = \sqrt[4]{\frac{2S_0(1-\alpha)}{(2-\epsilon)\sigma}}$
 $\epsilon = 1$: $T_s = \sqrt[4]{\frac{2\cdot 342\cdot 0.7}{5\cdot 67\cdot 10^{-8}}\frac{W/m^2}{W/(m^2K^4)}}$ $\rightarrow T_s = 303K = +30^{\circ}C$
 $\epsilon = 0$: $T_s = \sqrt[4]{\frac{2\cdot 342\cdot 0.7}{2\cdot 5\cdot 67\cdot 10^{-8}}\frac{W/m^2}{W/(m^2K^4)}}$ $\rightarrow T_s = 255K = -18^{\circ}C$
 $\epsilon = 3/4$: $T_s = \sqrt[4]{\frac{2\cdot 342\cdot 0.7}{1\cdot 25\cdot 5\cdot 67\cdot 10^{-8}}\frac{W/m^2}{W/(m^2K^4)}}$ $\rightarrow T_s = 287K = 14^{\circ}C$

difference in ϵ : Greenhouse effect

Greenhouse effect

- 1/2 of the greenhouse effect by water vapor
- 1/4 of the greenhouse effect by clouds
- 1/5 of the greenhouse effect by CO_2

Climate and the Oceans, G. Vallis

Water vapor feedback

- Half of the greenhouse effect is due to water vapor.
- What happens when the temperature rises?
- Warmer air can hold more water vapor.
- More water vapor increases the greenhouse effect.
- Temperature rises even more.

Ice albedo feedback

- Snow and ice have a high albedo reflecting 30 % - 80 % of sunlight.
- What happens when the temperature rises?
- Snow and ice cover and ice thickness is reduced exposing open water.
- Albedo is reduced and more sunlight is absorbed.
- Temperature rises even more.

Differential heating

Atmospheric circulation systems

Climate and the Oceans, G. Vallis

Coriolis Force

- Moving air or water parcels experience Coriolis force
- Parcels are deflected to the right on the Northern Hemisphere
- Balance between pressure gradient and Coriolis force: Geostrophic balance

$$-fv = -1/\rho \ \partial p/\partial x$$

Wind-driven circulation

Climate and the Oceans, G. Vallis

Conveyor belt

Climate and the Oceans, G. Vallis

Meridional overturning circulation (MOC)

Climate and the Oceans, G. Vallis

Meridional overturning circulation (MOC)

Climate and the Oceans, G. Vallis

Averaged density in the Atlantic Ocean

Climate and the Oceans, G. Vallis

Mixed Layer dynamics

Climate and the Oceans, G. Vallis

Natural modes of variability

- El Niño Southern Oscillation (ENSO)
- Atlantic Multidecadal Oscillation (AMO)
- Atlantic Meridional Mode (AMM)
- North Atlantic Oscillation (NAO)
- Arctic Oscillation (AO)

North Atlantic Oscillation (NAO)

NAO index

Instrumental temperature record

Climate and the Oceans, G. Vallis

Figure 7.3. Global mean surface temperatures of the past 1,800 years.

Further reading

- Climate and the Oceans, G. Vallis
- Introduction to Geophysical Fluid Dynamics, B. Cushman-Roisin
- Atmosphere-ocean Dynamics, A. Gill
- An Introduction to Dynamic Meteorology, J. Holton
- Regional Oceanography: An Introduction, M. Tomczak and J. Godfrey
- The Atmosphere and Ocean: A Physical Introduction, N. Wells
- Principles of Planetary Climate, R. Pierrehumbert
- www.realclimate.org, blog with many different contributors
- University of Chicago lectures on youtube.com, D. Archer