

Projected Baltic Sea ecosystem changes in future climates

Baltic Sea; where are we now?

Large Cyanobacterial blooms

Baltic Sea; where are we now?

Baltic Sea; where are we now?

Decreasing cod biomass

Baltic Sea; how to approach the future?

Combined effects of climate change and nutrient loads

Ensemble modelling to quantify uncertainty

Decision support to policy makers

Baltic Sea; how to approach the future?

SMHI

RCAO: Rossby Centre regional Atmosphere – Ocean climate model

Regional

Meier, H.E.M et al., et al, 2011:Quality assessment of atmospheric surface fields over the Baltic Sea of an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia

Results: Climate change can induce increased nutrient loads, mainly due to increased river runoff in the scenarios, but also due to changed nutrient dynamics.

BAU= "worst case"
REF= same concentrations
in rivers as today
BSAP= reduced loads
according to Baltic Sea
Action Plan

Indication of significant climate-change impact on nutrient loading and eutrophication

Future change of oxygen levels at the bottom – indicator of good environmental status

Projections of higher trophic levels (sprat)

(Source: MacKenzie et al., AMBIO, 2012)

Projected spawner biomass of sprat in the Baltic Sea assuming a temperature – driven spawner-recruit relationship with temperatures estimated from three different climate-oceanographic models. Fishing mortality of sprat was at a currently defined sustainability level and natural mortality was assumed equal to the mean level during 2008-2010.

Different population and food web models. All projections use the A1B emission scenario, ECHAM5 climate forcing and the RCO-SCOBI oceanographic-biogeochemical model.

Resultat: indikationer på sämre förhållanden för torsk vilket ger minskning i beståndet.

Phytoplankton Chl-a

Spring, upper 10 m

Ensemble mean changes between 2070–2099 and 1978–2007 of spring (March–May) phytoplankton concentration [mgChl-a/m³], vertically averaged for the upper 10 m