

Climate change promotes risk of hypoxia in coastal zones threatening zoobenthic communities and their function

E. Bonsdorff¹, B. Weigel¹, H.C. Andersson², H.E.M. Meier², M.C. Nordström¹, M. Snickars¹, A. Törnroos¹

¹Åbo Akademi University, Department of Biosciences, Environmental and Marine Biology, Åbo, Finland
²Swedish Meteorological and Hydrographical Institute, Norrköping, Sweden

46th International Liège Colloquium on Ocean Dynamics -Low Oxygen Environments In Marine, Estuarine And Fresh Waters-

Liège 5th-9th May, 2014

Major threats to coastal communities

0 utrophicat Ш

Hypoxia-Anoxi

Projected Temperature Increases Middle Emissions Scenario, 2080 - 2099

degradation Habitat

Φ

hang

limat

Aim and perspective

Understanding how coastal benthic communities are affected by oxygen depletion over the last decades, regarding...

- 1 Production (biomass)
- 2 Food web structure
- 3 Functional traits

Applying local climate change scenarios to project possible future conditions for benthic communities in coastal zones

Vulnerability of the Baltic Sea system

- Shallow, land-locked brackish sea
- Limited "marine" inflow/ water exchange
- Steep gradients in environmental variables
- Species living in their physiological distribution limits
- High anthropogenic impact/eutrophication

The Baltic Sea – fastest warming Large Marine Ecosystem

Belkin 2009, Progress in Oceanography

Lowered oxygen saturation concentration

 Link between surface temperature and bottom oxygen

Kabel et al. 2012, Nature Climate Change

SMHI oxygen time series 1960-2013

Growing trend in hypoxic area in the Baltic Sea

- General elevation in depth
- O Pronounced increase in coastal zone (Conley et al. 2011, Env. Sci. & Tec.)
- Reduction of available habitat area for aerobic organisms

Small scale temporal development of oxygen climate

Oxygen as driver of zoobenthic biomass progression

Generalized Additive Model

 $Log(biomass) \sim s(O_2 sat, k=4) + factor(exposure)$

factor (exposure) < 0.0001^{***} < $(O_2 \text{ sat})$ < 0.01^{**}

R-sq.(adj) = 0.328Deviance explained = 33.7%

Anthropogenic induced disturbance gradient and its impact on food web structures

Analyzing

Macrobenthic sub food webs in multi-decadal snapshot

Comparing

Structures of three sites along a gradient of organic enrichment

Sensu Pearson & Rosenberg 1978, Oceanogr. Mar. Biol. Annu. Rev.

Villnäs, Perus, Bonsdorff, 2011, J Sea Res

Fish farming as point source for

- Nutrient enrichment
 Organic content load
 Hypoxia/ anoxia
- OXYGEN

 ORG. ENRICHMENT

Simplification of web topology with increasing disturbance

Species richness

Reduction in top species

Reduction in intermediate species

Horizontal and vertical loss of complexity

Functional trait characteristics

low stress

Small to Large

Short to very long

Planktotrophic

Annual episodic

Local to long distance

Size

Longevity

Larval type

Reproductive frequency

Dispersal range

Small to medium

Short

Direct development

Semelparous

Local

Climate model scenarios (SMHI)

following Meier et al. 2012, Clim. Dyn.

Baltic Sea model: RCO-SCOBI (from SMHI, 3D model, 2 nm res.)

Ensemble mean changes between 2070–2099 and 1978–2007

REF = **Ref**erence conditions

Current nutrient concentrations in rivers and current atmospheric deposition (see Eilola et al. 2009)

BAU = **B**usiness-**A**s-**U**sual

Assuming exponential growth of agriculture in all Baltic Sea countries following HELCOM (2007) and current atmospheric deposition

BSAP = **B**altic **S**ea **A**ction **P**lan

Reduced riverine nutrient concentrations following HELCOM (2007) and 50% reduced atmospheric deposition

Sea surface temperature

Increase of **2.4 - 2.8°C** in annual mean SST

Ensemble mean changes between 2070–2099 and 1978–2007 of annual mean SST [°C]

Sea surface salinity

Decrease of **1.5 – 2 psu** in annual mean SSS

-2.0 -2.0 -1.9 -1.9 -1.8 -1.8 -1.7 -1.6 -1.6 -1.5 -1.5

Ensemble mean changes between 2070–2099 and 1978–2007 of annual mean SSS [g/kg]

Phytoplankton Chl-a

Spring, upper 10 m

Ensemble mean changes between 2070–2099 and 1978–2007 of spring (March–May) phytoplankton concentration [mgChl-a/m³], vertically averaged for the upper 10 m

Bottom oxygen conditions

Ensemble mean changes between 2070–2099 and 1978–2007 of summer (June–August) concentration [ml/l]

Summary and perspectives

 Increase of hypoxia in coastal zones of the Baltic sea

Conley et al 2011

 Pronounced seasonal and long term decline in local oxygen conditions

O High **benthic biomasses** in **deeper** and exposed sites

 Coastal fish moving into deeper water as well Snickars et al., submitted

Summary and perspectives

 Loss of diversity and complexity in food web structures

Diverse community becoming more uniform and opportunistic

O High **benthic biomasses** in **deeper** and exposed sites

 Trend in elevation of hypoxic depth
 (e.g. Hansson & Andersson 2013, SMHI Rep. Ocean. No.49, HELCOM, 2013, Balt. Sea Environ. Proc. No. 133)

Climate change scenarios suggest that these trends will be further amplified in the future

Acknowledgements

Top-level Research Initiative

Authors

Erik Bonsdorff

Helén Andersson

Markus Meier

Marie Nordström

Martin Snickars

Anna Törnroos

Contact

benjamin.weigel@abo.fi www.normer.uio.no

Support

Marie Järnström